Iberoamerican Journal of Medicine
http://www.iberoamericanjm.periodikos.com.br/article/doi/10.5281/zenodo.4421799
Iberoamerican Journal of Medicine
Original article

The possible role of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 at the leading and trailing edges of the breast cancer cell line

Dhurgam AL-Fahad

Downloads: 1
Views: 922

Abstract

Introduction: Phosphoinositides play a key role in the regulation of focal adhesions (FAs) turnover during cell adhesion and migration. However, their potential role in FA turnover at leading and trailing edge of cell are not yet fully understood. In this study, we investigate their spatial co-localisation with paxillin directly at leading and trailing edge of MDA-MB-231 breast cancer cell line.
Materials and methods: Cell lines and cell culture experiments were done using MDA-MB-231human adenocarcinoma cells. Co-trnasfection and confocal microscopy were performed to visualise phosphoinositides and FAs by using GFP-C1-PLCdelta-PH/Btk-PH-GFP and 3 μɡ paxillin-RFP as biosensors. Then, ImageJ was used to measure co-localisation point between Phosphatidylinositol 4,5-trisphosphate (PtdIns(4,5)P2) or Phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and paxillin Spearman's rank correlation value was taken between PtdIns(4,5)P2/PtdIns(3,4,5)P3.
Results: Our results demonstrate that the spatial co-localistion of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 with FA at leading and trailing age of cell were slightly changed.
Conclusions: This suggests that PtdIns(4,5)P2 and PtdIns(3,4,5)P3 play an equal role at the leading and trailing edges of the cancer metastasis through interaction with FA proteins.

Keywords

PtdIns(4,5)P2; PtdIns(3,4,5)P3; Focal adhesions; Spatial co-localistion

References

1. Baenke F, Peck B, Miess H, Schulze A. Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech. 2013;6(6):1353-63. doi: 10.1242/dmm.011338.
2. Thapa N, Choi S, Tan X, Wise T, Anderson RA. Phosphatidylinositol Phosphate 5-Kinase Iγ and Phosphoinositide 3-Kinase/Akt Signaling Couple to Promote Oncogenic Growth. J Biol Chem. 2015;290(30):18843-54. doi: 10.1074/jbc.M114.596742.
3. Zhou H, Huang S. Role of mTOR signaling in tumor cell motility, invasion and metastasis. Curr Protein Pept Sci. 2011;12(1):30-42. doi: 10.2174/138920311795659407.
4. Lattanzio R, Piantelli M, Falasca M. Role of phospholipase C in cell invasion and metastasis. Adv Biol Regul. 2013;53(3):309-18. doi: 10.1016/j.jbior.2013.07.006.
5. Maffucci T, Cooke FT, Foster FM, Traer CJ, Fry MJ, Falasca M. Class II phosphoinositide 3-kinase defines a novel signaling pathway in cell migration. J Cell Biol. 2005;169(5):789-99. doi: 10.1083/jcb.200408005.
6. Edling CE, Selvaggi F, Buus R, Maffucci T, Di Sebastiano P, Friess H, et al. Key role of phosphoinositide 3-kinase class IB in pancreatic cancer. Clin Cancer Res. 2010 Oct 15;16(20):4928-37. doi: 10.1158/1078-0432.CCR-10-1210.
7. Bader AG, Kang S, Vogt PK. Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc Natl Acad Sci U S A. 2006;103(5):1475-9. doi: 10.1073/pnas.0510857103.
8. Bader AG, Kang S, Zhao L, Vogt PK. Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer. 2005;5(12):921-9. doi: 10.1038/nrc1753.
9. Kang S, Bader AG, Vogt PK. Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci U S A. 2005;102(3):802-7. doi: 10.1073/pnas.0408864102.
10. Shayesteh L, Lu Y, Kuo WL, Baldocchi R, Godfrey T, Collins C, et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet. 1999 Jan;21(1):99-102. doi: 10.1038/5042.
11. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast,
and prostate cancer. Science. 1997;275(5308):1943-7. doi: 10.1126/science.275.5308.1943.
12. Majerus PW, York JD. Phosphoinositide phosphatases and disease. J Lipid Res. 2009;50 Suppl(Suppl):S249-54. doi: 10.1194/jlr.R800072-JLR200.
13. Hilpelä P, Vartiainen MK, Lappalainen P. Regulation of the actin cytoskeleton by PI(4,5)P2 and PI(3,4,5)P3. Curr Top Microbiol Immunol. 2004;282:117-63. doi: 10.1007/978-3-642-18805-3_5.
14. Sun Y, Ling K, Wagoner MP, Anderson RA. Type I gamma phosphatidylinositol phosphate kinase is required for EGF-stimulated directional cell migration. J Cell Biol. 2007;178(2):297-308. doi: 10.1083/jcb.200701078.
15. Raucher D, Stauffer T, Chen W, Shen K, Guo S, York JD, et al. Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell. 2000;100(2):221-8. doi: 10.1016/s0092-8674(00)81560-3.
16. Legate KR, Takahashi S, Bonakdar N, Fabry B, Boettiger D, Zent R, et al. Integrin adhesion and force coupling are independently regulated by localized PtdIns(4,5)2 synthesis. EMBO J. 2011;30(22):4539-53. doi: 10.1038/emboj.2011.332.
17. Di Paolo G, Pellegrini L, Letinic K, Cestra G, Zoncu R, Voronov S, et al. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 gamma by the FERM domain of talin. Nature. 2002;420(6911):85-9. doi: 10.1038/nature01147.
18. Izard T, Brown DT. Mechanisms and Functions of Vinculin Interactions with Phospholipids at Cell Adhesion Sites. J Biol Chem. 2016;291(6):2548-55. doi: 10.1074/jbc.R115.686493.
19. Wu Z, Li X, Sunkara M, Spearman H, Morris AJ, Huang C. PIPKIγ regulates focal adhesion dynamics and colon cancer cell invasion. PLoS One. 2011;6(9):e24775. doi: 10.1371/journal.pone.0024775.
20. Chandrasekar I, Stradal TE, Holt MR, Entschladen F, Jockusch BM, Ziegler WH. Vinculin acts as a sensor in lipid regulation of adhesion-site turnover. J Cell Sci. 2005;118(Pt 7):1461-72. doi: 10.1242/jcs.01734.
21. Wang JH. Pull and push: talin activation for integrin signaling. Cell Res. 2012;22(11):1512-4. doi: 10.1038/cr.2012.103.
22. Yuan Y, Li L, Zhu Y, Qi L, Azizi L, Hytönen VP, et al. The molecular basis of talin2's high affinity toward β1-integrin. Sci Rep. 2017;7:41989. doi: 10.1038/srep41989.
23. Rubashkin MG, Cassereau L, Bainer R, DuFort CC, Yui Y, Ou G, et al. Force engages vinculin and promotes tumor progression by enhancing PI3K activation of phosphatidylinositol (3,4,5)-triphosphate. Cancer Res. 2014;74(17):4597-611. doi: 10.1158/0008-5472.CAN-13-3698.
24. Greenwood JA, Theibert AB, Prestwich GD, Murphy-Ullrich JE. Restructuring of focal adhesion plaques by PI 3-kinase. Regulation by PtdIns (3,4,5)-p(3) binding to alpha-actinin. J Cell Biol. 2000;150(3):627-42. doi: 10.1083/jcb.150.3.627.
25. Zinchuk V, Wu Y, Grossenbacher-Zinchuk O. Bridging the gap between qualitative and quantitative colocalization results in fluorescence microscopy studies. Sci Rep. 2013;3:1365. doi: 10.1038/srep01365.
26. Dunn KW, Kamocka MM, McDonald JH. A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol. 2011;300(4):C723-42. doi: 10.1152/ajpcell.00462.2010.
27. Hauke J, Kossowski T. Comparison of Values of Pearson's and Spearman's Correlation Coefficients on the Same Sets of Data. Quaest Geogr. 2011;30(2):87-93. doi: 10.2478/v10117-011-0021-1.
28. Falke JJ, Ziemba BP. Interplay between phosphoinositide lipids and calcium signals at the leading edge of chemotaxing ameboid cells. Chem Phys Lipids. 2014;182:73-9. doi: 10.1016/j.chemphyslip.2014.01.002.
29. Thapa N, Anderson RA. PIP2 signaling, an integrator of cell polarity and vesicle trafficking in directionally migrating cells. Cell Adh Migr. 2012;6(5):409-12. doi: 10.4161/cam.21192.
30. Nishioka T, Aoki K, Hikake K, Yoshizaki H, Kiyokawa E, Matsuda M. Rapid turnover rate of phosphoinositides at the front of migrating MDCK cells. Mol Biol Cell. 2008;19(10):4213-23. doi: 10.1091/mbc.e08-03-0315.
31. Sharma VP, DesMarais V, Sumners C, Shaw G, Narang A. Immunostaining evidence for PI(4,5)P2 localization at the leading edge of chemoattractant-stimulated HL-60 cells. J Leukoc Biol. 2008;84(2):440-7. doi: 10.1189/jlb.0907636.
32. Idevall-Hagren O, De Camilli P. Detection and manipulation of phosphoinositides. Biochim Biophys Acta. 2015;1851(6):736-45. doi: 10.1016/j.bbalip.2014.12.008.
33. Patterson GH. Fluorescence microscopy below the diffraction limit. Semin Cell Dev Biol. 2009;20(8):886-93. doi: 10.1016/j.semcdb.2009.08.006.
34. Warren SC, Margineanu A, Katan M, Dunsby C, French PM. Homo-FRET Based Biosensors and Their Application to Multiplexed Imaging of Signalling Events in Live Cells. Int J Mol Sci. 2015;16(7):14695-716. doi: 10.3390/ijms160714695.
35. Balla T, Várnai P. Visualization of cellular phosphoinositide pools with GFP-fused protein-domains. Curr Protoc Cell Biol. 2009;Chapter 24:Unit 24.4. doi: 10.1002/0471143030.cb2404s42.
36. Ji C, Lou X. Single-molecule Super-resolution Imaging of Phosphatidylinositol 4,5-bisphosphate in the Plasma Membrane with Novel Fluorescent Probes. J Vis Exp. 2016;(116):54466. doi: 10.3791/54466.


Submitted date:
12/15/2020

Reviewed date:
12/30/2020

Accepted date:
01/04/2021

Publication date:
01/06/2021

5ff609760e8825153a959f63 iberoamericanjm Articles
Links & Downloads

Iberoam J Med

Share this page
Page Sections